<u>Exercise 4.1 (Revised) - Chapter 4 - Linear Equations In Two Variables - Ncert Solutions class 9 - Maths</u>

Updated On 11-02-2025 By Lithanya

Share this to Friend on WhatsApp

Chapter 4 - Linear Equations in Two Variables - NCERT Solutions Class 9 Maths

Ex 4.1 Question 1.

The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement. (Take the cost of a notebook to be Rs x and that of a pen to be Rs y).

Answer.

Let the cost of a notebook be Rs. x.

Let the cost of a pen be R s. y.

We need to write a linear equation in two variables to represent the statement, "Cost of a notebook is twice the cost of a pen".

Therefore, we can conclude that the required statement will be x=2y.

Ex 4.1 Question 2.

Express the following linear equations in the form ax + by + c = 0 and indicate the values of a, b and c in each case:

(i)
$$2x + 3y = 9.3\overline{5}$$

(ii)
$$x - \frac{y}{5} - 10 = 0$$

(iii)
$$-2x + 3y = 6$$

(iv)
$$x = 3y$$

(v)
$$2x = -5y$$

(vi)
$$3x + 2 = 0$$

(vii)
$$y - 2 = 0$$

(viii)
$$5=2x$$

Answer.

(i)
$$2x + 3y = 9.3\overline{5}$$

We need to express the linear equation $2x + 3y = 9.3\overline{5}$ in the form ax + by + c = 0 and indicate the values of a, b and c. $2x + 3y = 9.3\overline{5}$ can also be written as $2x + 3y - 9.3\overline{5} = 0$.

We need to compare the equation $2x + 3y - 9.3\overline{5} = 0$ with the general equation ax + by + c = 0, to get the values of a, b and c.

Therefore, we can conclude that a=2,b=3 and $c=-9.3\overline{5}$

(ii)
$$x - \frac{y}{5} - 10 = 0$$

We need to express the linear equation $x-\frac{y}{5}-10=0$ in the form ax+by+c=0 and indicate the values of a,b and c. $x-\frac{y}{5}-10=0$ can also be written as $1\cdot x-\frac{y}{5}-10=0$.

We need to compare the equation

$$1 \cdot x - \frac{y}{5} - 10 = 0$$

with the general equation ax + by + c = 0, to get the values of a, b and c.

Therefore, we can conclude that

$$a = 1, b = -\frac{1}{5}$$
 and $c = -10$

(iii)
$$-2x + 3y = 6$$

We need to express the linear equation -2x + 3y = 6 in the form ax + by + c = 0 and indicate the values of a, b and c. -2x + 3y = 6 can also be written as -2x + 3y - 6 = 0.

We need to compare the equation -2x + 3y - 6 = 0 with the general equation ax + by + c = 0, to get the values of a, b and c.

Therefore, we can conclude that a=-2, b=3 and c=-6.

(iv)
$$x = 3y$$

We need to express the linear equation x = 3y in the form ax + by + c = 0 and indicate the values of a, b and c. x = 3y can also be written as x - 3y + 0 = 0.

We need to compare the equation x - 3y + 0 = 0 with the general equation ax + by + c = 0, to get the values of a, b and c.

Therefore, we can conclude that a=1,b=-3 and c=0.

(v)
$$2x = -5y$$

We need to express the linear equation 2x = -5y in the form ax + by + c = 0 and indicate the values of a,

2x = -5y can also be written as 2x + 5y + 0 = 0.

We need to compare the equation 2x + 5y + 0 = 0 with the general equation ax + by + c = 0, to get the values of a, b and c.

Therefore, we can conclude that a=2, b=5 and c=0.

(vi)
$$3x + 2 = 0$$

We need to express the linear equation 3x + 2 = 0 in the form ax + by + c = 0 and indicate the values of a, b and c. 3x + 2 = 0 can also be written as $3x + 0 \cdot y + 2 = 0$.

We need to compare the equation $3x + 0 \cdot y + 2 = 0$ with the general equation ax + by + c = 0, to get the values of a, b and c.

Therefore, we can conclude that a=3, b=0 and c=2.

NCERT Solutions for Class 9 Maths Exercise 4.1

(vii)
$$y - 2 = 0$$

We need to express the linear equation y-2=0 in the form ax+by+c=0 and indicate the values of a, b and c.

y-2=0 can also be written as $0\cdot x+1\cdot y-2=0$.

We need to compare the equation $0 \cdot x + 1 \cdot y - 2 = 0$ with the general equation ax + by + c = 0, to get the values of a, b and c.

Therefore, we can conclude that a=0, b=1 and c=-2.

(viii)
$$5=2x$$

We need to express the linear equation 5=2x in the form ax+by+c=0 and indicate the values of a,b and c. 5=2x can also be written as $-2x+0\cdot y+5=0$.

We need to compare the equation $-2x + 0 \cdot y + 5 = 0$ with the general equation ax + by + c = 0, to get the values of a, b and c.

Therefore, we can conclude that a=-2, b=0 and c=5.

<u>Exercise 4.2 (Revised) - Chapter 4 - Linear Equations In Two Variables - Ncert</u> <u>Solutions class 9 - Maths</u>

Updated On 11-02-2025 By Lithanya

Chapter 4 - Linear Equations in Two Variables - NCERT Solutions Class 9 Maths

Ex 4.2 Question 1.

Which one of the following options is true, and why?

y = 3x + 5 has

(i) a unique solution,

(ii) only two solutions,

(iii) infinitely many solutions

Answer.

We need to the number of solutions of the linear equation y = 3x + 5.

We know that any linear equation has infinitely many solutions.

Justification:

If
$$x=0$$
 then $y=3\times 0+5=5$

If
$$x=1$$
 then $y=3\times 1+5=8$

If
$$x=-2$$
 then $y=3 imes (-2)+5=-1$

Similarly, we can find infinite many solutions by putting the values of x.

Ex 4.2 Question 2.

Write four solutions for each of the following equations:

(i)
$$2x + y = 7$$

(ii)
$$\pi x + y = 9$$

(iii)
$$x=4y$$

$$2x + y = 7$$

We know that any linear equation has infinitely many solutions.

Let us put x=0 in the linear equation 2x+y=7, to get

$$2(0) + y = 7 \quad \Rightarrow y = 7$$

Thus, we get first pair of solution as (0,7).

Let us put x=2 in the linear equation 2x+y=7, to get

$$2(2) + y = 7 \Rightarrow y + 4 = 7 \Rightarrow y = 3.$$

Thus, we get second pair of solution as (2,3).

Let us put x=4 in the linear equation 2x+y=7, to get

$$2(4) + y = 7 \quad \Rightarrow y + 8 = 7 \Rightarrow y = -1$$

Thus, we get third pair of solution as (4, -1).

Let us put x=6 in the linear equation 2x+y=7, to get

$$2(6) + y = 7 \Rightarrow y + 12 = 7 \Rightarrow y = -5.$$

Thus, we get fourth pair of solution as (6, -5).

Therefore, we can conclude that four solutions for the linear equation 2x + y = 7 are (0,7), (2,3), (4,-1) and (6,-5).

(ii)
$$\pi x + y = 9$$

We know that any linear equation has infinitely many solutions.

Let us put x=0 in the linear equation $\pi x + y = 9$, to get

$$\pi(0) + y = 9 \quad \Rightarrow y = 9$$

Thus, we get first pair of solution as (0,9).

Let us put y=0 in the linear equation $\pi x+y=9$, to get

$$\pi x + (0) = 9 \quad \Rightarrow x = \frac{9}{\pi}$$

Thus, we get second pair of solution as $\left(\frac{9}{\pi},0\right)$.

Let us put x=1 in the linear equation $\pi x+y=9$, to get

$$\pi(1) + y = 9 \quad \Rightarrow y = \frac{9}{\pi}$$

Thus, we get third pair of solution as $\left(1,\frac{9}{\pi}\right)$.

Let us put y=2 in the linear equation $\pi x+y=9$, to get

$$\pi x + 2 = 9$$
 $\Rightarrow \pi x = 7 \Rightarrow x = \frac{7}{\pi}$

Thus, we get fourth pair of solution as $\left(\frac{7}{\pi}, 2\right)$.

Therefore, we can conclude that four solutions for the linear equation $\pi x + y = 9$ are $(0,9), \left(\frac{9}{\pi},0\right), \left(1,\frac{9}{\pi}\right)$ and $\left(\frac{7}{\pi},2\right)$.

(iii)
$$x=4y$$

We know that any linear equation has infinitely many solutions.

Let us put y=0 in the linear equation x=4y, to get

$$x = 4(0) \Rightarrow x = 0$$

Thus, we get first pair of solution as (0,0).

Let us put y=2 in the linear equation x=4y, to get

$$x = 4(2) \Rightarrow x = 8$$

Thus, we get second pair of solution as (8, 2).

Let us put y=4 in the linear equation x=4y, to get

$$x = 4(4) \Rightarrow x = 16$$

Thus, we get third pair of solution as (16, 4).

Let us put y=6 in the linear equation x=4y, to get

$$x = 4(6) \Rightarrow x = 24$$

Thus, we get fourth pair of solution as (24,6).

Therefore, we can conclude that four solutions for the linear equation x = 4y are (0,0),(8,2),(16,4) and (24,6).

Ex 4.2 Question 3.

Check which of the following are solutions of the equation x-2y=4 and which are not:

- (i) (0,2)
- (ii) (2,0)
- (iii) (4,0)
- (iv) $(\sqrt{2},4\sqrt{2})$
- (v) (1,1)

Answer.

(i) (0,2)

We need to put x=0 and y=2 in the L.H.S. of linear equation x-2y=4, to get

$$(0) - 2(2) = -4$$

$$\therefore$$
 L.H.S. \neq R.H.S.

Therefore, we can conclude that (0,2) is not a solution of the linear equation x-2y=4.

(ii) (2,0)

We need to put x=2 and y=0 in the L.H.S. of linear equation x-2y=4, to get

$$(2) - 2(0) = 2$$

∴ L.H.S.
$$\neq$$
 R.H.S.

Therefore, we can conclude that (2,0) is not a solution of the linear equation x-2y=4.

(iii) (4,0)

We need to put x=4 and y=0 in the linear equation x-2y=4, to get

$$(4) -2(0) = 4$$

$$\therefore$$
 L.H.S. = R.H.S.

Therefore, we can conclude that (4,0) is a solution of the linear equation x-2y=4.

(iv)
$$(\sqrt{2}, 4\sqrt{2})$$

We need to put $x=\sqrt{2}$ and $y=4\sqrt{2}$ in the linear equation x-2y=4, to get

$$(\sqrt{2})-2(4\sqrt{2})=-7\sqrt{2}$$

$$\therefore$$
 L.H.S. \neq R.H.S.

Therefore, we can conclude that $(\sqrt{2}, 4\sqrt{2})$ is not a solution of the linear equation x - 2y = 4.

(v)
$$(1,1)$$

We need to put x=1 and y=1 in the linear equation x-2y=4, to get

(1)
$$-2(1) = -1$$

$$\therefore$$
 L.H.S. \neq R.H.S.

Therefore, we can conclude that $^{(1,1)}$ is not a solution of the linear equation x-2y=4.

Ex 4.2 Question 4.

Find the value of k, if x = 2, y = 1 is a solution of the equation 2x + 3y = k.

Answer.

We know that, if x=2 and y=1 is a solution of the linear equation 2x+3y=k, then on substituting the respective values of x and y in the linear equation 2x+3y=k, the LHS and RHS of the given linear equation will not be effected.

$$\therefore 2(2) + 3(1) = k \Rightarrow k = 4 + 3 \Rightarrow k = 7$$

Therefore, we can conclude that the value of k, for which the linear equation 2x + 3y = k has x = 2 and y = 1 as one of its solutions is 7.

